15.03.2017

Осветительные приборы и отличительные огни на судне

Осветительные приборы. Устройство, содержащее одну или несколько ламп и светотехническую арматуру, перераспределяющее свет ламп и преобразующее его структуру, предназначенное для освещения или сигнализации, называется световым прибором.
Осветительные приборы и отличительные огни на судне
Назначение светового прибора — наиболее благоприятное распределение излучаемого лампой светового потока, защита глаз от слепящего действия источника света, предохранение лампы от воздействия окружающей среды и механических повреждений, удобное соединение лампы с электрической сетью и надежное ее крепление.

Светильник — это световой прибор, перераспределяющий свет лампы внутри больших телесных углов, обеспечивающий угловую концентрацию светового потока с коэффициентом усиления не более 30 для круглосимметричных и не более 15 для симметричных приборов.

В зависимости от распределения светового потока различают светильники: прямого света, направляющие не менее 80 % светового потока в нижнюю полусферу; преимущественно прямого света, направляющие 60—80% светового потока в нижнюю полусферу; рассеянного света, направляющие 40—60 % светового потока в нижнюю полусферу; преимущественно отраженного света, направляющие 20—40 % светового потока преимущественно в нижнюю полусферу; отраженного света, направляющие менее 20 % светового потока в нижнюю полусферу.

По защите лампы от влияния внешней среды различают: пыле- и водонезащищенные, у которых лампа не защищена от воздействия окружающей среды (IP20); пылезащищенные, у которых лампа защищена от внешней среды стеклянным колпаком (IP40); водозащищенные, имеющие уплотнения в местах ввода проводов и крепления стекла к корпусу (IP54); погружные, которые могут работать под водой на глубине более 10 м (IP57).

15.02.2017

Схемы управления электроприводами шпилей и брашпилей

Для управления электродвигателями якорно-швартовных устройств применяют контроллерные и контакторные схемы.
Схемы управления электроприводами шпилей и брашпилей
Наиболее простые контроллерные схемы используют для электроприводов малой мощности, так как при увеличении ее возрастают масса и габаритные размеры контроллеров, затрудняется подвод силовых цепей, увеличиваются усилия, необходимые для манипулирования контроллерами.

Контакторные схемы для двигателей большой мощности обеспечивают автоматизацию процесса пуска, ограничение момента при заторможенном двигателе и снижают усилия, необходимые оператору для управления электроприводом. Недостатками контакторных систем следует считать большую сложность электрических соединений, большие габаритные размеры аппаратуры управления и большую стоимость. Несмотря на это контакторные схемы находят широкое применение на современных судах.

11.01.2017

Управление электроприводами грузовых лебёдок и лифтов

Рассмотрим схему управления электроприводом шлюпочной лебедки с асинхронным короткозамкнутым электродвигателем (рис. 1).
Управление электроприводами грузовых лебёдок и лифтов
Подготовка электропривода к действию осуществляется включением автоматического выключателя Q1, при этом загорается сигнальная лампа Н.

Двигатель включают нажатием на кнопку S1 «Подъем» или S2 «Спуск»; при этом получает питание соответствующая катушка реверсивного контактора К1 или К2. Контактор срабатывает, замыкая силовые контакты в цепи статора электродвигателя и вспомогательный контакт в цепи катушки линейного контактора К3; последний, замыкая свои силовые контакты, подает питание электродвигателю и электромагниту Y тормоза.

10.01.2017

Пусковой ток в двигателе постоянного тока: устройства для ограничения

В статье приведены примеры устройств, которые помогают сделать запуск двигателя более плавным. Контроллеры и пр. устройства позволяют обеспечить нужный крутящий момент без высокого пускового тока.

Пусковой ток – это ток, который потребляется двигателем при его непосредственном запуске. Важной особенностью пускового тока является то, что он может в несколько раз превосходить номинальный ток. Слишком высокий пусковой ток негативно влияет на двигатель, в конечном итоге он может попросту сгореть.

Именно поэтому существуют специальные приспособления для ограничения пускового тока.

26.12.2016

Системы управления судовыми дизель-генераторами

В работе судовых электростанций автоматические системы управления дизель-генераторами обеспечивают пуск:
Системы управления дизель-генераторами
  • одного из основных дизель-генераторов в случае увеличения нагрузки свыше 80 % мощности работающего генератора;
  • основного дизель-генератора и перевод на него нагрузки с валогенератора во время маневровых режимов работы судна, когда значительно изменяются напряжение и частота тока на шинах ГЭРЩ; 
  • одного резервного дизель-генератора;
  • аварийного дизель-генератора при чрезмерном понижении или исчезновении напряжения на шинах основной станции. Время запуска при этом не должно превышать 15 с.
Система автоматического пуска аварийного дизель-генератора обеспечивает его запуск в случае уменьшения напряжения или частоты сети ниже допустимых значений, а также при выходе из строя второго (работающего) дизель-генератора.

20.12.2016

Электрическая проводка в кабель-каналах и трубах в частном доме

Сегодняшний день диктует нам эру электричества. Тяжело представить себе, если бы вас поселили в дом, где нет ни одного электроприбора. Вряд ли вы долго в нем выдержали бы. Именно потому монтаж проводки в доме – это первоначальный этап любого капитального ремонта. Не важно, меняете ли вы проводку, или делаете с нуля - алгоритм действий остается тот же.
Электрическая проводка в кабель-каналах и трубах в частном доме
Давайте детально разберем каждый этап установки электричества, и основные советы.

15.12.2016

Определение вращающего момента и мощности электродвигателя грузовой лебёдки

Работа грузоподъемного механизма грузовой лебедки характеризуется цикличностью процессов и повторно-кратковременным режимом работы электродвигателя.
Определение вращающего момента и мощности электродвигателя грузовой лебёдки
Весь цикл работы электродвигателя может быть разделен на следующие этапы: подъем груза, поворот стрелы, спуск груза, выгрузка, подъем гака без груза, поворот стрелы, спуск гака, погрузка.

Электроприводы грузовых и якорно-швартовных устройств

На судах внутреннего и морского плавания применяют грузоподъемные устройства различного назначения: грузовые лебедки и краны для погрузочно-разгрузочных операций; оперативные лебедки земснарядов; лебедки и краны для специальных операций: шлюпочные, буксирные, траловые; лифты.
Электроприводы грузовых и якорно-швартовных устройств
Грузовые лебедки устанавливают на судах, имеющих собственные краны и стрелы. Обычно в крупных портах и пристанях эти операции производят средствами портовой механизации, широко применяют также специальные плавучие краны. Поэтому грузовые лебедки имеются лишь на некоторых судах, в районе плавания которых нет механизированных портов, обеспечивающих выполнение погрузочно-разгрузочных работ.

Судовые грузоподъемные устройства бывают с электродвигателями постоянного и переменного тока. При постоянном токе используют двигатели с последовательным и смешанным возбуждением с мягкой механической характеристикой, наиболее полно удовлетворяющей характеру работы грузоподъемного устройства. Для переменного тока применяют асинхронные электродвигатели с короткозамкнутым и фазным ротором. Асинхронные двигатели с фазным ротором используют редко, из-за больших потерь энергии в регулирующих реостатах.

13.12.2016

Автоматизация управления судовых электростанций

Применение в судовых электростанциях различных источников тока (дизель-генераторов, валогенераторов, аккумуляторных батарей, преобразователей тока) требует автоматизации управления их совместной работой. Электростанции переменного тока на грузовых речных судах (танкерах, толкачах, буксирах) имеют автоматические системы совместной работы валогенератора и дизель-генератора. На рис. 1 приведена схема, обеспечивающая автоматический пуск и остановку дизель-генератора, а также перевод нагрузки с валогенератора на дизель-генератор и обратно. Валогенераторы могут работать только на переднем ходу судна с допустимыми изменениями напряжения и частоты тока.

Основные элементы схемы: G1 — валогенератор; G2 — дизель-генератор; Ql, Q2 — автоматические выключатели; Kl, К2—контакторы; К9 — реле частоты, срабатывающее при достижении частоты тока дизель-генератора 40 Гц после его запуска.
Принципиальная схема автоматической совместной работы валогенератора и дизель-генератора
Рис. 1. Принципиальная схема автоматической совместной работы валогенератора и дизель-генератора

Контакты этого реле через промежуточные реле К8 и К3 выключают валогенератор и включают дизель-генератор. К4 — реле частоты, которое при уменьшении частоты тока валогенератора до 40 Гц через промежуточное реле К6 подключает цепь управления станции автозапуска дизель-генератора. К5 — реле, срабатывающее при достижении частоты тока валогенератора 45 Гц. Реле К5 через промежуточное реле К7 служит для остановки дизель-генератора и подключения на шины ГЭРЩ валогенератора.

11.12.2016

Приемо-сдаточные испытания электроустановок

Современный мир с развитием высокотехнологичного прогресса стал полностью зависим от электричества. Ни одно жилое здание или промышленный завод не смогут функционировать без этого ресурса. Бытовая техника, медицинское оборудование, производственные мощности и многое другое – все это работает или заряжается от электросети. Чтобы снабдить любой объект электричеством, сначала необходимо совершить прокладку кабельных линий.
 

Сисадмин мнил себя богом сети, электрик грубо развеял этот миф. Научись развеивать мифы! © Electrical Engineer's blog [2010-2016].