30.03.13

Неразветвленная цепь переменного тока

Рассмотрим электрическую цепь, изображенную на рис. 1.

Пусть к источнику постоянной э. д. с. присоединена катушка индуктивности L (ее электрическое сопротивление мы относим к общему сопротивлению r цепи). В первые моменты времени после включения ток в катушке почти равен нулю, но скорость его изменения велика, поэтому велика э. д. с. самоиндукции
равная по величине напряжению на зажимах катушки и направленная навстречу ему. По мере нарастания тока скорость изменения тока уменьшается, падает и э. д. с. самоиндукции и, наконец, становится равной нулю. Соответственно этому по мере падения э. д. с. самоиндукции, направленной навстречу э. д. с. источника тока, ток в цепи растет и становится равным E/r.

Графики напряжения на катушке индуктивности и тока, протекающего в рассматриваемой цепи, представлены на рис. 2.

Из графиков следует, что при наличии в цепи индуктивности нарастание тока происходит не мгновенно, а постепенно. Процесс нарастания тока до величины I = E/r носит название неустановившегося процесса.

Пусть теперь к источнику постоянной э. д. с. подключается конденсатор емкости С. В момент включения напряжение на конденсаторе равно нулю. Заряды на обкладках конденсатора отсутствуют, в первый момент ток I = E/r. По мере увеличения напряжения на конденсаторе (т. е. между обкладками) и заряда на обкладках ток в цепи падает.

Рис. 1

Рис. 2

Когда значение напряжения на обкладках приближается к Е, ток в цепи приближается к нулю. Из графиков (рис. 2 статьи "Конденсаторы и емкость") следует, что при наличии в цепи емкости нарастание напряжения происходит не мгновенно, а постепенно. Представим себе, что в силу каких-то причин э. д. с. Е в схеме, представленной на рис. 1, уменьшилась, значит, уменьшился и ток I.

Следовательно, изменилось магнитное поле катушки. Вследствие этого в катушке индуктивности возникла э. д. с. самоиндукции, которая существует, пока ток изменяется. Эта э. д. с. вызывает появление дополнительного тока, который протекает в сопротивлениях цепи и совершает при этом работу, т. е. выделяется дополнительное тепло в сопротивлении г. Количество тепловой энергии точно соответствует количеству энергии, на которое уменьшилась энергия магнитного поля.

Если Е падает до нуля, то энергия, выделяющаяся в форме тепла в сопротивлении цепи г, численно равна энергии, предварительно запасенной в магнитном поле катушки.

Если в силу каких-то причин уменьшится или исчезнет э. д. с. Е в схеме, представленной на рис. 1 статьи "Конденсаторы и емкость", то начнется перемещение зарядов в цепи, соединяющей обкладки конденсаторов, и возникает ток.

Этот ток постепенно исчезнет (когда напряжение на конденсаторе Uc станет равным Е). Если Е источника э. д. с. упадет до нуля, работа, совершенная током разрядки конденсатора, будет численно равна предварительно запасенной энергии электрического поля конденсатора. Таким образом, и катушка индуктивности, и конденсатор являются накопителями энергии, которую они при определенных условиях возвращают в цепь.

В цепях переменного тока с включенными емкостью и индуктивностью ток проходит все время: происходят непрерывные процессы зарядки и разрядки конденсатора и создание и исчезновение магнитного поля катушки индуктивности.

Рис. 3

При этом емкость и индуктивность в течение всего времени прохождения тока оказывают влияние на его величину.

Неразветвленная цепь переменного тока представлена на рис. 3. Около каждого элемента цепи — сопротивления r, катушки индуктивности L, конденсатора емкости С и источника переменной э. д. с. — представлены соответствующие графики I, II, III, IV сдвига фаз между током и напряжением.

Напряжение на сопротивлении совпадает по фазе с током. Напряжение на конденсаторе при синусоидальных токах отстает от тока на π/2 т. е. на 90°. Напряжение на катушке индуктивности опережает ток на π/2 (на 90°). Это значит, что в любой момент времени напряжения на конденсаторе и на катушке индуктивности будут иметь противоположные направления.

Когда магнитное поле индуктивности будет накапливать энергию, конденсатор, находящийся в той же цепи, будет разряжаться — отдавать свою энергию в цепь.

Действующий ток в неразветвленной цепи переменного тока определяется по формуле

или

где ω = 2πf

Эта величина обозначается буквой z и называется полным, или кажущимся сопротивлением.

Электрическое сопротивление r в цепях переменного тока называется активным сопротивлением.

Величина ωL обозначается xL и называется реактивным сопротивлением индуктивности, или просто индуктивным сопротивлением.

Величина 1/ωC обозначается xC и называется реактивным сопротивлением емкости, или просто емкостным сопротивлением.

Величина ωL - 1/ωC обозначается х и называется реактивным сопротивлением.

Полное сопротивление z и реактивные сопротивления измеряются в омах.

⇓ДОБАВИТЬ В ЗАКЛАДКИ⇓


⇒ВНИМАНИЕ⇐
  • Материал на блоге⇒ Весь материал предоставляется исключительно в ознакомительных целях! При распространении материала используйте пожалуйста ссылку на наш блог!
  • Ошибки⇒ Если вы обнаружили ошибки в статье, то сообщите нам через контакты или в комментариях к статье. Мы будем очень признательны!
  • Файлообменники⇒ Если Вам не удалось скачать материал по причине нерабочих ссылок или отсутствующих файлов на файлообменниках, то сообщите нам через контакты или в комментариях к статье.
  • Правообладателям⇒ Администрация блога отрицательно относится к нарушению авторских прав на www.electroengineer.ru. Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала.


⇓ОБСУДИТЬ СТАТЬЮ⇓
 

Сисадмин мнил себя богом сети, электрик грубо развеял этот миф. Научись развеивать мифы! © Electrical Engineer's blog [2010-2016].