26.07.13

Регулирование частоты вращения, пуск и торможение электродвигателей переменного тока

Регулирование частоты вращения. Электродвигатели переменного тока регулируют изменением: частоты тока питающей сети; числа пар полюсов обмотки статора; параметров цепи статора или ротора. Для асинхронных электродвигателей применяются все три способа регулирования, для синхронных — только первый.
Регулирование частоты вращения, пуск и торможение электродвигателей переменного тока
У коллекторных электродвигателей переменного тока частоту вращения регулируют способом, указанным для электродвигателя постоянного тока с последовательным возбуждением.

Регулирование частоты вращения изменением частоты тока является наиболее экономичным, но для питания электродвигателя требуется отдельный генератор или преобразователь с регулируемыми частотой и напряжением. При этом способе необходимо стремиться, чтобы характеристики асинхронного электродвигателя обладали достаточной жесткостью, которую обеспечивают совместным регулированием частоты тока и напряжения.

При пропорциональном понижении частоты тока и напряжения жесткость механической характеристики 1 (рис. 1) и максимальный момент Мmах уменьшаются незначительно по сравнению с естественной характеристикой 0. К преимуществам частотного регулирования следует отнести широкий диапазон (до 12:1) и плавность.

Регулирование частоты вращения изменением числа пар полюсов применяют только для асинхронных электродвигателей с короткозамкнутым ротором, так как у двигателей с фазным ротором потребовалось бы одновременное переключение обмотки ротора, усложняющее его схему и конструкцию.

Число пар полюсов можно изменить переключением числа секций одной обмотки или переключением двух независимых обмоток. В первом случае обмотка статора состоит из двух равных частей, включаемых последовательно или параллельно. Такое переключение позволяет изменить число пар полюсов в 2 раза и, следовательно, менять частоту вращения электродвигателя в отношении 2:1. Применение двух обмоток с различным числом пар полюсов позволяет менять частоту вращения в различных соотношениях, например, 1:3; 2:3 и т.д.

Механические характеристики асинхронного электродвигателя при различной частоте тока
Рис. 1. Механические характеристики асинхронного электродвигателя при различной частоте тока

Двигатели, способные работать при двух различных числах пар полюсов, называют двухскоростными. Их конструируют для работы с постоянным моментом или постоянной мощностью.

Кроме двухскоростных двигателей, применяют трех- и четырехскоростные. Промышленность выпускает двухскоростные двигатели с одной обмоткой в статоре, трех- и четырехскоростные — с двумя обмотками, которые в свою очередь могут переключаться в отношении 2:1. Этот способ регулирования экономичен (двигатели имеют достаточно жесткие характеристики), но требует сложного переключающего устройства; кроме того, у двигателей с двумя обмотками резко снижается использование активной меди, так как при работе одной из обмоток вторая выключена. Однако благодаря своим преимуществам двигатели с переключением числа пар полюсов широко применяются в судовых электроприводах, не требующих плавного регулирования частоты вращения (шпилей, брашпилей и др.).

Регулирование изменением параметров цепей электродвигателя распространено у двигателей с фазным ротором. При введении в цепь ротора активного сопротивления частота вращения двигателя уменьшается при том же значении вращающего момента (см. рис. 2, характеристика 1). Этот способ неэкономичен, требует дорогого и громоздкого реостата, причем уменьшение частоты вращения составляет 10—20 %, поэтому в судовых условиях он применяется сравнительно редко и в основном на короткие промежутки времени.

Пуск синхронных двигателей. Различают прямой пуск и пуск с ограничением пускового тока.

Прямой пуск прост, но при включении возникают большие пусковые токи, достигающие значений Iп = (4-7) Iном.

При питании электродвигателя от электростанции ограниченной мощности пусковые токи могут вызвать недопустимые кратковременные снижения напряжения, нарушающие работу включенных приемников электрической энергии. Поэтому прямой пуск применяется в том случае, если мощность электродвигателя во много раз меньше мощности электростанции, от которой он питается.

При мощности электродвигателя соизмеримой с мощностью электростанции применяют различные способы пуска с ограничением пускового тока: переключением обмотки статора двигателя со «звезды» на «треугольник»; при помощи автотрансформатора; включением резисторов в цепь статора; включением реакторов в цепь статора; включением резисторов в цепь ротора (для двигателей с фазным ротором).

При пуске переключением обмоток статора со «звезды» на «треугольник» сначала замыкается выключатель Q1, при этом обмотки статора двигателя оказываются включенными «звездой» (рис. 2, а). После разгона двигателя выключатель Q1 размыкается, а выключатель Q2 замыкается, и обмотки включаются на «треугольник». При этом способе пусковой ток уменьшается в 3 раза.

Пуск двигателя переключением со «звезды» на «треугольник»
Рис. 2. Пуск двигателя переключением со «звезды» на «треугольник»

Преимуществом способа является его простота, недостатком — уменьшение пускового момента также в 3 раза (рис. 2, б). Уменьшение момента объясняется тем, что при соединении обмоток «звездой» напряжение на них в √3 раза меньше, чем при соединении «треугольником», а как видно из формулы (1), момент зависит от напряжения во, второй степени. В некоторых случаях пусковой момент при соединении обмоток «звездой» оказывается недостаточным, тогда применение способа становится невозможным.

Преимуществом пуска двигателя с помощью автотрансформатора по сравнению с предыдущим способом является возможность установить любое первоначальное напряжение (рис. 3, а) и затем плавно увеличивать его. Недостатком этого способа являются высокая стоимость, большие масса и габаритные размеры пускового автотрансформатора. Характеристики приведены на рис. 3, б.

Включение на время пуска в цепь статора резисторов (рис. 4,а) или реакторов приводит к большим активным потерям в случае резисторов и уменьшению коэффициента мощности в случае реакторов, однако вследствие простоты этих способов они находят достаточно широкое применение. Как видно из формул (2) и (3), включение элементов в цепь статора увеличивает критическую частоту вращения Мmах1 и уменьшает момент Mmах (характеристика 1, рис. 4, б).

Пуск двигателей с фазным ротором осуществляется с помощью пусковых реостатов, включенных в цепь ротора (рис. 5, а).

Пусковой реостат состоит из трех-четырех секций резисторов на каждую фазу. По мере разгона двигателя секции реостата поочередно закорачивают. Сопротивления пускового реостата рассчитывают графоаналитическим методом с использованием пусковой диаграммы. В начале пуска в цепь ротора включают реостат с полным сопротивлением, при котором пусковой момент должен быть Мп = (0,7 - 0,8)Мmах.

Механические характеристики асинхронного двигателя на рабочем участке от М = 0 до М = 0,8 Мmах можно приближенно считать прямолинейными, тогда на пусковой диаграмме (рис. 5, б) искусственная характеристика, соответствующая началу пуска, будет иметь вид прямой 4, проходящей через точки nх и г.

Пуск двигателя с помощью автотрансформатора (3). Пуск двигателя с резисторами в цепи статора (4). Пуск двигателя с фазным ротором (5)
Рис. 3-5. Пуск двигателя с помощью автотрансформатора (3). Пуск двигателя с резисторами в цепи статора (4). Пуск двигателя с фазным ротором (5)

Под действием вращающего момента двигатель начнет вращаться с увеличивающейся частотой вращения, а вращающий момент, как видно из характеристики, будет уменьшаться. Этот процесс будет продолжаться до тех пор, пока вращающий момент не станет равным моменту сопротивления Мс, причем частота вращения будет меньше номинальной, соответствующей естественной характеристике.

Для увеличения частоты вращения необходимо выключить секцию пускового реостата R3 (см. рис. 5), замкнув выключатель Q3. Обычно это делают в точке г' (см. рис. 5, б) при вращающем моменте двигателя M1 = (1,1-1,2) Mном. Оставшееся сопротивление пускового реостата должно быть таким, чтобы момент двигателя на искусственной характеристике 3 не превышал значения пускового момента Mп, т.е. характеристика 3 должна пройти через точку "в" (считается, что за время замыкания выключателя Q3 частота вращения двигателя n3 не изменяется). Аналогично замыкают выключатели Q2 и Q1, двигатель переходит на работу в соответствии с характеристиками 2 и 1, пока не будет полностью шунтирован реостат.

Если для естественной характеристики 1

Отношение критических скольжений для искусственной характеристики 2 и естественной характеристики 1
т. е. отношение критических скольжений для искусственной характеристики 2 и естественной характеристики 1 равно отношению приведенного активного сопротивления фазы ротора, включая сопротивление секции пускового реостата, к приведенному активному сопротивлению ротора.

Далее, из известной в электротехнике формулы:
s/sкp=const
видно, что при любых одинаковых моментах для естественной и искусственной характеристик имеет место условие s/sкp = const, следовательно, для характеристик 1 и 2 при моменте М = Мп справедливо равенство

На пусковой диаграмме (см. рис. 5) скольжению s1 соответствует отрезок "оа", а скольжению s2 — отрезок "об". Обозначим длину первого отрезка lоа, второго lоа + lоб, тогда:

Сопротивления
Активное сопротивление обмотки ротора двигателя определяется по каталогу. Если в каталоге данные о сопротивлении отсутствуют, его можно вычислить по формуле:
Активное сопротивление обмотки ротора двигателя

Электрическое торможение. Способы электрического торможения двигателей переменного тока аналогичны способам торможения двигателей постоянного тока.

Режим торможения с отдачей энергии в сеть наступает при частоте вращения ротора, превышающей частоту вращения магнитного поля. Такой режим возможен при разгоне двигателя под действием падающего груза или при переключении много-скоростного электродвигателя на меньшую скорость.

При разгоне двигателя под действием падающего груза по естественной характеристике 0 (рис. 6) частота вращения увеличивается и при М = 0 достигает частоты вращения магнитного поля nх. При дальнейшем разгоне двигателя частота вращения становится больше nх, э.д.с. больше напряжения сети и машина работает в режиме генератора, отдавая в сеть активную энергию. Этому режиму соответствует участок характеристики в квадранте II.

Динамическое торможение асинхронного двигателя производится отключением обмотки статора от трехфазной питающей сети и включением ее на питание от источника постоянного тока (рис. 7), при этом в двигателе вместо вращающегося магнитного поля возникает неподвижное (nх = 0). В результате взаимодействия вращающегося ротора с неподвижным магнитным полем возникает тормозной момент (см. рис. 6, характеристика 1). Тормозной момент можно регулировать изменением напряжения постоянного тока или изменением сопротивления резистора R (см. рис. 7).

Механические характеристики асинхронной машины при различных режимах работы (6). Схема динамического торможения асинхронного электродвигателя (7)
Рис. 6-7. Механические характеристики асинхронной машины при различных режимах работы (6). Схема динамического торможения асинхронного электродвигателя (7)

Для двигателей с фазным ротором, кроме того, регулирование тормозного момента возможно изменением сопротивления резисторов, включенных в цепь ротора.

Торможение противовключением может быть получено при реверсировании двигателя на ходу путем переключения двух фаз обмотки статора, при этом магнитное поле начинает вращаться в обратную сторону и тормозит двигатель. На рис. 6 этому режиму соответствует участок характеристики 2, находящийся в квадранте II. Когда частота вращения двигателя уменьшится до нуля, его необходимо отключить, в противном случае он начнет вращаться в обратную сторону (участок характеристики 2 в квадранте III).

Сравнение способов торможения

Сравнивая различные способы торможения двигателей переменного тока, можно сделать вывод, что наиболее экономичным является торможение с отдачей энергии в сеть, но при нем нельзя затормозить двигатель до частоты вращения меньшей, чем частота вращения магнитного поля.

Динамическое торможение позволяет тормозить электродвигатель до частоты вращения, близкой к нулю, но требует дополнительного источника постоянного тока.

Торможение противовключением наименее эффективно, так как при больших тормозных токах тормозной момент на валу двигателя с короткозамкнутым ротором незначителен.

Поэтому данный способ торможения применяется только для двигателей с фазным ротором, у которых за счет введения в цепь ротора резисторов с большим сопротивлением можно увеличить тормозной момент при одновременном уменьшении тока (см. рис. 6, характеристика 3).

⇓ДОБАВИТЬ В ЗАКЛАДКИ⇓


⇒ВНИМАНИЕ⇐
  • Материал на блоге⇒ Весь материал предоставляется исключительно в ознакомительных целях! При распространении материала используйте пожалуйста ссылку на наш блог!
  • Ошибки⇒ Если вы обнаружили ошибки в статье, то сообщите нам через контакты или в комментариях к статье. Мы будем очень признательны!
  • Файлообменники⇒ Если Вам не удалось скачать материал по причине нерабочих ссылок или отсутствующих файлов на файлообменниках, то сообщите нам через контакты или в комментариях к статье.
  • Правообладателям⇒ Администрация блога отрицательно относится к нарушению авторских прав на www.electroengineer.ru. Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала.


⇓ОБСУДИТЬ СТАТЬЮ⇓
 

Сисадмин мнил себя богом сети, электрик грубо развеял этот миф. Научись развеивать мифы! © Electrical Engineer's blog [2010-2016].