09.10.2019

Проблемные задания на олимпиадах по физике и химии

Всероссийские дистанционные олимпиады по предметам школьной программы набирают все большую популярность среди учащихся. В последнее время именно доступность интернета и мобильных гаджетов привела к резкому скачку числа участников таких мероприятий.
Но, если раньше участниками олимпиад по школьным предметам были в основном только отличники и успевающие ученики, то сейчас участником всероссийской олимпиады может стать совершенно любой школьник.

Портал всероссийских дистанционных олимпиад «Отличник» на своей странице в сети выложил отчет о результатах своих дистанционных олимпиад за последние годы. Из этого отчета видно, какие школьные предметы можно считать сводными для освоения и в каких заданиях участники чаще всего делают ошибки.

Самыми сложными, по мнению организаторов олимпиад и конкурсов «Отличник», являются предметы физика и химия. Олимпиада по химии включает в себя множество разных заданий из разделов неорганической и органической химии, и все они имеют примерно одинаковый процент ошибок участников. И совсем другая картина видна с заданиями по физике. О них и пойдет речь в данной статье.

27.06.2019

Оптические системы

Оптические системы - это совокупность оптических элементов, которые создаются для образования световых пучков. Существуют оптические приборы, в которые входит хотя бы один базовый прибор, необходимый для измерений тех или иных элементов.

Оптические системы широко применяются на различных предприятиях, так как обладают огромной многофункциональностью и наличием особых действий, которые помогают добиться идеальных результатов при создании деталей.

Отмечается, что современная оптическая система широко применяется в таких сферах жизни, как производство радиооборудования, а также космических спутников.

24.06.2019

Особенности дифференциальных выключателей АВДТ

Быт современного человека невозможно себе представить без электроэнергии. Освещение и питание многочисленных бытовых приборов, количество и мощность которых постоянно увеличивается, требует наличия надёжных защитных устройств, применение которых обеспечит снижение вероятности возникновения аварийных ситуаций, пожаров и выхода из строя дорогостоящих бытовых приборов.

Преимуществами дифференциальных выключателей АВДТ являются надёжная защита людей в случае прикосновения к токоведущим частям, а также, если произошла утечка тока. В этом случае дифференциальный автомат выполняет функции устройства защитного отключения.

10.04.2019

Электрические исполнительные механизмы

Главными параметрами, по которым классифицируются электрические исполнительные механизмы, следует считать крутящий момент и усилие на штоке. По первому параметру для них принят следующий нормальный ряд: 0,25; 0,63; 1,6; 4; 10; 25; 63; 160; 400 и 1000 кгм. Для прямоходных исполнительных механизмов усилия на штоке определяются следующим рядом: 6,3; 16; 40; 100; 250; 630; 1600 кгм.

Однооборотные исполнительные механизмы предназначены для перемещения регулирующих органов в системах автоматического регулирования и дистанционного управления в соответствии с сигналами управляющих устройств. Управление механизмами типа МЭО осуществляется либо с помощью магнитных усилителей (бесконтактное), либо с помощью реверсивных контактных пусковых устройств (контактное).

09.04.2019

Исполнительные устройства

Исполнительное устройство, служащее для изменения регулирующего воздействия на объект управления, состоит из двух основных функциональных блоков — исполнительного механизма и регулирующего органа.

Исполнительные устройства обладают различным классом точности: 1,5; 2,5; 4 и 6. В зависимости от устойчивости к воздействию температуры и влажности окружающего воздуха они делятся на первую (от — 50°С до + 50°C) и вторую (от — 30°С до + 50°С) группы.

Исполнительным механизмом называется приводная часть исполнительного устройства, которая преобразует получаемую энергию в перестановочное усилие и управляет регулирующим органом по команде от регулятора или устройства дистанционного управления.
По виду движения выходного элемента исполнительные механизмы могут быть прямоходными (элемент перемещается поступательно), однооборотными (перемещается по дуге в пределах 360°) и многооборотными (элемент вращается).

По характеру применяемой энергии различают электрические, пневматические, гидравлические и комбинированные (электрогидравлические и т. п.) механизмы. Их модификации отличаются также по ряду технических показателей. Например, по виду защищенности корпуса — обычные, пыле- и брызгозащищенные, взрывобезопасные.

Регулирующий орган является звеном исполнительного устройства, с помощью которого под воздействием исполнительного механизма осуществляется управление движением жидкой или газовой среды.

08.04.2019

Средства измерения массы. Типы весов

В легкой и других отраслях промышленности применяют средства измерения массы (весы) следующих типов: общепромышленные, технологические, лабораторные и специальные (для физико-механических измерений).

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие весы.

Приборы для электрических измерений

Электроизмерительные приборы можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное магнитное поле, размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

Модульные вопросы к дисциплине ТССКН и С и Э

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Герметическое соединение кабелей и кабельных трасс

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции токопроводящих жил. У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов мегаомметра к жиле и ее экрану. Сопротивление изоляции, полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

Эксплуатация систем охлаждения СЭУ

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ»

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:
  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на систему охлаждения пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.
Система охлаждения дизелей
Рис. 1. Система охлаждения дизелей

1 - охладитель топлива; 2 - маслоохладитель турбонагнетателей; 3 - расширительная цистерна ГД; 4 - водоохладитель ГД; 5 - маслоохладитель ГД; 6 - кингстонный ящик; 7 - фильтры забортной воды; 8 - кингстонный ящик; 9 - приемные фильтры ВДГ; 10 - насосы забортной воды ВДГ; 11 - насос пресной воды ГД; 12 - основной и резервный насосы забортной воды ГД; 13 - маслоохладитель ВДГ; 14 - водоохладитель ВДГ; 15 - ВДГ; 16 - расширительная цистерна ВДГ; 17 - опорный подшипник валопровода; 18 - главный упорный подшипник; 19 - главный двигатель; 20 - охладитель наддувочного воздуха; 21 - вода на охлаждение компрессоров; 22 - заполнение и пополнение системы пресной воды; 23 - подключение системы прогрева ДВС; 1оп - пресная вода; 1оз - забортная вода.
 

Сисадмин мнил себя богом сети, электрик грубо развеял этот миф. Научись развеивать мифы! © Electrical Engineer's blog [2010-2019].